In each problem, assume that the distributions are normal and have approximately the same population standard deviation. In each problem, please provide the following information. (a) What is the level of significance? State the null and alternate hypothe (2024)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "oQfKxwjrUJKEQcfWuo082ARFMxZQAmET05WQVxwOwJUumKGVfqLc3CMETMUFKuua"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "oQfKxwjrUJKEQcfWuo082ARFMxZQAmET05WQVxwOwJUumKGVfqLc3CMETMUFKuua"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "oQfKxwjrUJKEQcfWuo082ARFMxZQAmET05WQVxwOwJUumKGVfqLc3CMETMUFKuua", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    In each problem, assume that the distributions are normal and have approximately the same population standard deviation. In each problem, please provide the following information. (a) What is the level of significance? State the null and alternate hypothe (2024)

    FAQs

    When to use 0.01 and 0.05 level of significance? ›

    How to Find the Level of Significance? If p > 0.05 and p ≤ 0.1, it means that there will be a low assumption for the null hypothesis. If p > 0.01 and p ≤ 0.05, then there must be a strong assumption about the null hypothesis. If p ≤ 0.01, then a very strong assumption about the null hypothesis is indicated.

    How do you find the p-value when the population standard deviation is unknown? ›

    When the population standard deviation is unknown, use the t -distribution to find the p-value. If the p-value is the area in the left-tail: Use the t. dist function to find the p-value.

    What is the null hypothesis of the population mean? ›

    The null hypothesis is a hypothesis that the population mean equals a specific value. The alternative hypothesis reflects our claim. The alternative hypothesis says the population mean is “greater than” or “less than” or “not equal to” the value we assume is true in the null hypothesis.

    When testing hypothesis about a population, mean if the population standard deviation is known, we use the? ›

    If the population standard deviation (σ) is known, a hypothesis test performed for one population mean is called one-mean z-test or simply z-test. A z-test is a hypothesis test for testing a population mean, μ, against a supposed population mean, μ0.

    How do you calculate the 0.05 level of significance? ›

    To achieve a significance level of 0.05 for a two-sided test, the absolute value of the test statistic (|z|) must be greater than or equal to the critical value 1.96 (which corresponds to the level 0.025 for a one-sided test).

    What is the Z value at the 0.01 level of significance? ›

    From Table 9.3, zα = 2.33 at the 0.01 level of significance, which is less than z = 2.50.

    What is the p-value in standard deviation? ›

    The P value is defined as the probability under the assumption of no effect or no difference (null hypothesis), of obtaining a result equal to or more extreme than what was actually observed. The P stands for probability and measures how likely it is that any observed difference between groups is due to chance.

    How do you find the p-value if you have the z value? ›

    If you have found a positive z value (z≥0 z ≥ 0 ): Find the row corresponding to the z value you found up to the first decimal, and the column corresponding to the second decimal. At the intersection point of this row and column, you find the left sided p value pleft. The two sided p value is 2×(1−pleft)

    Do you reject the null hypothesis at the 0.05 significance level? ›

    If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis.

    How to interpret p-value? ›

    A p-value measures the probability of obtaining the observed results, assuming that the null hypothesis is true. The lower the p-value, the greater the statistical significance of the observed difference. A p-value of 0.05 or lower is generally considered statistically significant.

    When to reject null hypothesis p-value? ›

    A P-value less than 0.05 is deemed to be statistically significant, meaning the null hypothesis should be rejected in such a case. A P-Value greater than 0.05 is not considered to be statistically significant, meaning the null hypothesis should not be rejected.

    What is the decision rule for p-value? ›

    The p-value only tells you how likely the data you have observed is to have occurred under the null hypothesis. If the p-value is below your threshold of significance (typically p < 0.05), then you can reject the null hypothesis, but this does not necessarily mean that your alternative hypothesis is true.

    What is the p-value for a hypothesis test for the mean population standard deviation known? ›

    When the population standard deviation is known, use the normal distribution to find the p-value. The p-value is the area in the tail(s) of a normal distribution, so the norm. dist(x,μ ,σ ,logic operator) function can be used to calculate the p-value. For x, enter the value for ¯¯¯x .

    What is not rejecting the null hypothesis when the null hypothesis is false? ›

    A type I error (false-positive) occurs if an investigator rejects a null hypothesis that is actually true in the population; a type II error (false-negative) occurs if the investigator fails to reject a null hypothesis that is actually false in the population.

    When would you use the .01 level of significance instead of the .05 level? ›

    And this is exactly it: When we put it that way, saying that we want the probability (of the null hypothesis being true) — called a p-value — to be less than 5%, we have essentially set the level of significance at 0.05. If we want the probability to be less than 1%, we have set the level of significance at 0.01.

    Is the .05 level or the .01 level more significant? ›

    The 1% significance level is for results with p values below . 01. This is a higher level of confidence - we can be not just 95% but 99% "confident" that results significant at this level are not due to sampling error. Here both of your results are statistically significant at the 5% level (p values below .

    What is the difference between the .10 .05 and .01 levels of significance? ›

    Common significance levels are 0.10 (1 chance in 10), 0.05 (1 chance in 20), and 0.01 (1 chance in 100). The result of a hypothesis test, as has been seen, is that the null hypothesis is either rejected or not. The significance level for the test is set in advance by the researcher in choosing a critical test value.

    What significance level is usually .05 or .01 symbol? ›

    The significance level, also denoted as alpha or α, is the probability of rejecting the null hypothesis when it is true. For example, a significance level of 0.05 indicates a 5% risk of concluding that a difference exists when there is no actual difference.

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Zonia Mosciski DO

    Last Updated:

    Views: 6443

    Rating: 4 / 5 (71 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Zonia Mosciski DO

    Birthday: 1996-05-16

    Address: Suite 228 919 Deana Ford, Lake Meridithberg, NE 60017-4257

    Phone: +2613987384138

    Job: Chief Retail Officer

    Hobby: Tai chi, Dowsing, Poi, Letterboxing, Watching movies, Video gaming, Singing

    Introduction: My name is Zonia Mosciski DO, I am a enchanting, joyous, lovely, successful, hilarious, tender, outstanding person who loves writing and wants to share my knowledge and understanding with you.